Civilización Egipcia
La civilización egipcia era la que llevaba la delantera en los conocimientos matemáticos.
Alrededor del año 2700 a. C., los egipcios introdujeron el primer sistema de numeración completamente desarrollado de base 10. Aunque no era un sistema posicional, permitió el uso de grandes números y también de fracciones en la forma de fracciones unitarias: fracciones del Ojo de Horus, y varias fracciones binarias.
En esa misma época, las técnicas egipcias de construcción incluyeron sistemas de topografía, marcando el norte por la situación del sol al mediodía. Antes del año 2000 a.C., comenzaron a aparecer referencias claras que citaban aproximaciones para π y raíces cuadradas. Las relaciones del número exacto, tablas aritméticas, los problemas del álgebra y aplicaciones prácticas con pesos y medidas también comenzaron a aparecer alrededor de 2000 a.C., con varios problemas solucionados por métodos aritméticos abstractos.
Civilización China Antigua e India Antigua

.jpg)
Grecia
Pese a que las Matemáticas ya eran avanzadas en tiempos anteriores (babilonios o egipcios), hasta los griegos, la preocupación por esta ciencia era meramente práctica: medir, construir, contar, etc. Los griegos, sin embargo, se preocupan por reflexionar sobre la naturaleza de los números, sobre la naturaleza de los "objetos" matemáticos (geometría). Convirtieron las Matemáticas en una ciencia racional y estructurada, con propiedades que se demuestran. En realidad, la contribución de los griegos a las Matemáticas constituye el mayor avance de esta ciencia en el periodo comprendido entre la Prehistoria y el Renacimiento.
Cálculo Diferencial
El cálculo diferencial es una parte importante del análisis matemático y dentro del mismo del cálculo. Consiste en el estudio del cambio de las variables dependientes cuando cambian las variables independientes de las funciones o campos objetos del análisis. El principal objeto de estudio en el cálculo diferencial es la derivada. Una noción estrechamente relacionada es la de diferencial de una función Y es que el cálculo diferencial se apoya constantemente en el concepto básico del límite. El paso al límite es la principal herramienta que permite desarrollar la teoría del cálculo diferencial y la que lo diferencia claramente del álgebra. Desde el punto de vista matemático de las funciones y la geometría, la derivada de una función en un cierto punto es una medida de la tasa en la cual una función cambia conforme un argumento se modifica. Una derivada es el cálculo de las pendientes instantáneas de en cada punto . Esto se corresponde a las pendientes de las tangentes de la gráfica de dicha función en sus puntos (una tangente por punto); Las derivadas pueden ser utilizadas para conocer la concavidad de una función, sus intervalos de crecimiento, sus máximos y mínimos. La inversa de una derivada se llama primitiva, anti derivada o integral indefinida.
Cálculo Integral
La idea del cálculo integral consiste en calcular, en general, superficies curvilíneas, es decir, el área entre la gráfica de una función y el eje x.
Es la integral definida de la función (f) de variable (x) los límites de A a B. Se pretende que la zona entre la curva y los ejes. El cálculo integral se refiere al cálculo de integrales tales. El origen del cálculo integral se remonta a la época de Arquímedes (287-212 a.C.), matemático griego de la antigüedad, que obtuvo resultados tan importantes como el valor del área encerrada por un segmento parabólico. La derivada apareció veinte siglos después para resolver otros problemas que en principio no tenían nada en común con el cálculo integral. El descubrimiento más importante del cálculo infinitesimal (creado por Barrow, Newton y Leibniz) es la íntima relación entre la derivada y la integral definida, a pesar de haber seguido caminos diferentes durante veinte siglos. Una vez conocida la conexión entre derivada e integral (teorema de Barrow), el cálculo de integrales definidas se hace tan sencillo como el de las derivadas.
La integral definida de Riemann surge a partir del problema del cálculo de áreas de superficies limitadas por curvas. En el desarrollo del concepto de función integrable de una función acotada definida en un intervalo acotado, aparecen los conceptos de integral superior e integral inferior de Riemann. La idea consiste en efectuar aproximaciones por exceso y por defecto utilizando los rectángulos exteriores e interiores a la curva, en función de una determinada partición del intervalo.
HISTORIA DEL CALCULO DIFERENCIAL.
so good
ResponderEliminar